

Development Standards & Practices Used
List all standard circuit, hardware, software practices used in this project. List all

the engineering standards that apply to this project that were considered.

Development Standards:

● ISO/IEC 12207

● TCP/IP

● FTP Circuit Standards

● High and low level schematics

● Parts lists

● simulation results

● OpenCL

● XML

● Linux Standard Base

● Unified Modeling language

● Message Passing Interface

● PCB123

Summary of Requirements

List all requirements as bullet points in brief.

● Use live-feed camera input

● Extract Frame Using Open-CV libraries

● Use Tensorflow & Keras pre-trained model on large dataset

● 6 x faster processing than existing algorithm

● 99% above accuracy on open-closed eye detection

● Reduce the model to a acceptable rate

SDDEC20-01 1

Applicable Courses from Iowa State University Curriculum

1. CPRE 281

2. CPRE 288

3. CPRE 482x

4. COMS 352

5. COMS 228

6. COMS 327

7. COMS 311

8. EE 224

9. EE 324

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your

Iowa State curriculum in order to complete this project.

1. Machine Learning

2. Acceleration on Embedded Systems

3. Camera interface

4. OpenCV library

5. 2-D image processing

6. PCB design on schematic & Layout

SDDEC20-01 2

Table of Contents
1 Introduction 5

1.1Acknowledgement 5

1.2 Problem and Project Statement 5

1.3 Operational Environment 7

1.4 Requirements 7

1.5 Intended Users and Uses 8

1.6 Assumptions and Limitations 9

1.7 Expected End Product and Deliverables 9

2. Specifications and Analysis 10

2.1 Proposed Approach 10

2.2 Design Analysis 11

2.3 Development Process 14

2.4 Conceptual Sketch 20

3. Statement of Work 21

3.1 Previous Work And Literature 21

3.2 Technology Considerations 22

3.3 Task Decomposition 22

3.4 Possible Risks And Risk Management 23

3.5 Project Proposed Milestones and Evaluation Criteria 23

3.6 Project Tracking Procedures 24

3.7 Expected Results and Validation 24

4. Project Timeline, Estimated Resources, and Challenges 25

4.1 Project Timeline 25

4.2 Feasibility Assessment 26

4.3 Personnel Effort Requirements 26

4.4 Other Resource Requirements 27

4.5 Financial Requirements 27

5. Testing and Implementation 28

5.1 Interface Specifications 28

5.2 Hardware and software 29

SDDEC20-01 3

5.3 Functional Testing 29

5.4 Non-Functional Testing 29

5.5 Process 30

5.6 Results 30

6. Closing Material 33

6.1 Conclusion 33

6.2 References 33

6.3 Appendices 34

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

Figures:

figure[1] shows screenshot of the baseline metrics using tensorflow lite, we can observe the memory
usage and latency(page 6)

figure[2],[3],[4] The schematic design for the Daughter card(Page 16-17)

figure [5] The layout design for Daughter card(page 18)

figure [6] A workflow for this project.(page 20)

figure [7],[8] A Gantt Chart for the project.(page 25-26)

figure [9],[10] Result for pruned model.(page 31-32)

Tables:

table[1] show assumption and limitation of our project (page 8)

table[2]BOM of the Daughter card PCB design(page 19)

table [3] projected effort(page 26)

SDDEC20-01 4

1 Introduction

1.1 ACKNOWLEDGEMENT

Special Thanks of gratitude to JR Spidell from Collins Aerospace who gave us the golden
opportunity to do this wonderful project.

1.2 PROBLEM AND PROJECT STATEMENT

Problem:

Hypoxia, Fatigue, Strain Doubles would cause pilots to crush their airplane, huge losses
economically and not to mention they put their life in danger.

Project Statement:

Machine Learning algorithm has been developed to detect the blink rate on pilots, based on
research, several blink patterns are related to Hypoxia, Fatigue and strain Doubles. Machine
learning is loaded onto a fast processing edge device(FPGA) to detect such fatigue patterns. Our
goal is to improve the existing machine learning algorithm, in terms of accuracy and efficiency by
accelerating the algorithm from both software and hardware perspective.

SDDEC20-01 5

figure 1

[this is the screenshot of the baseline metrics using tensorflow lite, we can observe the memory
usage and latency]

SDDEC20-01 6

1.3 OPERATIONAL ENVIRONMENT

The end product will go into an aircraft cockpit environment. There are a lot of environmental
constraints associated with that. However, for our project, we will not consider an aircraft cockpit
environment involved in our design.

However, we are not designing the mechanical or electrical systems here. So this specific project
doesn/t have environmental constraints. There are few software environments and software
platforms.
1.we are using Anaconda framework and a list of packages need to be installed.
2.the ML inference will run on Ultra-96 board which is a linux os.

Instead of these software environments, the constraints we have to work with are related to latency,
accuracy, and memory consumption.

1.4 REQUIREMENTS

our goal is to improve performance of ML algorithms. However, if we want to reduce latency, we
have to do some changes on our original algorithms, like pruning , changing hyper-parameters,
data pre-manipulation all these changes will cause a drop of accuracy. so we want to minimize the
accuracy drop or keep the accuracy no difference.

Functional Requirements:

Stage 1: Improve accuracy of the algorithm -- not less than 97%

Stage 2: Improve accuracy of the algorithm after pruning -- higher than 84%

Reduce the latency of the algorithm -- reduce latency by 75%

Reduce the memory requirements -- reduce memory requirement by 75%

Reduce the memory requirements -- reduce memory requirement by 80%

Non-Functional Requirements:

Usability: The system shall be used by pilots to achieve quantified objectives with
effectiveness, efficiency, and satisfaction in a quantified context of use.

Constraints:
There are multiple architectures that we could choose for the DPU(FPGA part), however
the edge board memory limits our choices, if we got a larger memory and frequency
development board, we could take more advantages of choosing larger architecture. To
solve this problem, we have other approaches such as hyper-parameter tuning, network
quantization.
Software environment is also one of the constraints. For example , at the beginning of the
project we were try to re-do some existing project in order to get familiar with tools that we
might use in our project, however each testing project we were re-doing require different
environment software version, so it’s hard to decide which version of software and
environment that we were using for our project.

SDDEC20-01 7

Economic/Market requirement:

 1) material costs, 2) development costs

Material costs can be 1) development materials 2) the material cost to make the product.
From a development material perspective, we have to live within the constraint of $1K for
materials that have already been purchased.
The material cost to make the project is not a constraint for this project, since we are
focused on the algorithms.
From a development cost perspective, the primary driver is the cost of people's time. Our
budget for this is the allowable time we have between now and your final report.

Environment Requirements:

There are no specific environmental requirements for this project.

Operating environment: The system must work under the Xilinx FPGA board.

1.5 INTENDED USERS AND USES

Our intended users for the end product, the whole large project, will be the military pilot and help
them protect their life from unexpected health problems which may make the warcraft out of
control.

However, we are the middle part of the whole large project. In our perspective, we are working for
our client’s request, and the client will use our design to improve the end product. So, we don’t
need to think about how to serve the military pilot into our project. We also don’t need to think
about the airspace usage thing like that.

 So, the constraints we have to work with are related to latency, accuracy, and memory
consumption.

SDDEC20-01 8

1.6 ASSUMPTIONS AND LIMITATIONS

table[1]

1.7 EXPECTED END PRODUCT AND DELIVERABLES

Expected End product and Deliverables:

1. Optimized Machine Learning Algorithm

We will improve the existing machine learning algorithm using xilinx IP (optimization
framework), tensor board, camera interface, to find the optimized efficiency while not losing
significant accuracy. The technique we use such as finding optimized hyperparameters, pruning,
parallel computing in programmable logic, in hope to achieve a 6 times faster detection capability.

2. Use the MIPI camera interface to catch the eye image.

The MIPI camera will improve the latency and memory compared with the USB camera we
use at the beginning. The MIPI camera will work well and catch the image we want in the testing.

3. Integrated eye-detection system composed of FPGA, MIPI, and needed software

SDDEC20-01 9

Assumptions For our previous assumption on the project,
 the accuracy of the algorithm will not be less than 97%;
the latency of the algorithm will reduce latency by 75%;
 memory requirement for reducing memory by 75%.

Limitations We don’t have actual users for our project at this time. The limitation is the
optimization of accuracy, latency and the memory should get the client
requirements.

Limited numbers of eye datasets.
Existing helmet mounted open/closed eye datasets lacking.

2. Specifications and Analysis

2.1 PROPOSED APPROACH

Functional requirements:

Our large functional requirements are to reduce the Latency, accuracy and memory consumption
for the current design.

In order to get our deliverables, we should work on pruning, hyper-parameters, camera, FPGA,
data pre-manipulations, and a few ways to improve our ML algorithm, like quantization, tensorflow
lite.

hyper-parameters :result we have is that latency with 1598 and the accuracy would be 93% which
for both latency improvement with 12.73 percent and the accuracy decreased would be 4.25%(for
more information please go page 12 Hyperparameter Tuning)

camera string: We can get the image but we are not satisfied with it, we want to use some camera
features to do data pre-manipulations in order to reduce workloads for our main CPU.

pruning: we have tested one pruning way to reduce our ML algorithm layers, and it hurt our
accuracy a little, but it reduces almost half memory usage which is a significant improvement.

FPGA: we implement a sample project for learning how to use several tools to design and modify
FPGA on ultr96-board, and we will continuously work on our final goal which is using a DPU to do
math calculation for our main CPU.(page 12 FPGA)

data pre-manipulations: we have tested multiple manipulated images processed from Matlab to see
how they affect our ML algorithm.(page 13 matlab)

Non-functional requirements:

Usability: The system shall be used by pilot to achieve quantified objectives with effectiveness,
efficiency, and satisfaction in a quantified context of use

Scalability: The system shall be robust enough to work with different pilot’s eyes

Maintainability: The system shall be easily maintainable

For non-functional requirements, we don’t have environmental requirements.

SDDEC20-01 10

Standards:

1. Circuits standards:

○Schematics

○Parts lists

○Simulation results

2. Digital Design standards:

○High and low level schematics

○Simulation results

3. Software standards:

○Source code

○In-line comments

○External documentation

2.2 DESIGN ANALYSIS

1. Set up environment:

discuss what we did so far:

V1: We setted up the anaconda environment, Xilinx tool suite, Ultra96-v2 board, experimented
with Tensor board, and made our first progress on making RGB color space pictures into grayscale,
which gives us significant improvement in time efficiency.

Did it work? Why or why not:

V1: It worked, because for pictures that are 3 color space requires a lot more computation, when we
can reduce it to grayscale without losing accuracy, grayscale gives 42% faster performance,

Our observations, thoughts, and ideas to modify or continue:

---Machine learning algorithm acceleration can be done from both software and hardware, the real
significant acceleration only comes from writing VHDL and programming at register level, however

SDDEC20-01 11

software acceleration is just as important. The best acceleration comes from a deep understanding
of the algorithm from a software perspective, then designing a custom chip, ASIC for that specific
machine learning algorithm. .

Results:

Improved existing machine learning algorithm, by reducing color space from RGB to grayscale, we
see an improvement in time efficiency by 42%

Strength:

---Huge improvement on existing machine learning algorithm in terms of speed

---Huge improvement on model size after prune, the model size decrease from 10MB to 1MB

weakness:

A lot more acceleration is left undone, pruning, optimized hyperparameters, hardware acceleration
etc.

---Model after pruning data have some lack for sparsity and we need to collect more images to test
it.

2. Camera Setting:

discuss what we did so far:

We set up the USB camera on Ultra 96.

Did it work? Why or why not:

It works and we get the image from the Ultra96.

Our observations, thoughts, and ideas to modify or continue:

We can get the image but we are not satisfied with it. Can we modify the camera interface so we
can do some analysis or change the pixel, color to serve our algorithm?

Weakness:

It is hard to modify the USB camera we use because it is a finished product, not used for the
experiment testing. We need to find another camera interface product that we can modify with it.

3. Matlab

Matlab is a data processing software that can be used to apply filters on input images and modify
the image with a variety of methods with the help of built-in functions. In this project, Matlab is
used to pre-manipulate the input data so that the machine learning algorithm can achieve higher
accuracy and less time cost. One idea is to modify the image so that the algorithm will have less
calculation (e.g. noise reduction), another idea is process the image to replace layers in the
algorithm, which may have the same effect as the first method (e.g. gabor filter). I have built a
variety of image filters and tested them in the algorithm, comparing the results with original image
input: Noise reduction, gabor filter, overexposure, resizing, and more.

SDDEC20-01 12

4. Hyperparameter Tuning

discuss what we did so far:

I am working on the hyperparameter of our training model to find the best hyperparameter
to reduce the latency of the model while the accuracy is still in a high standard. So far the
hyperparameter I have chosen includes: padding, number of the hidden layer, kernel size and max
pooling for both filter and the hidden layer, number of the filter, epoch, batch_size, optimizer,
activations function. stride of both max pool and the stride of the pool. Upon that, I have been
working with the data premapulating side to reduce the filter layer by applying the existing layer.

Our observations, thoughts, and ideas to modify or continue:

 so far the best hyperparameter we have find is to use the number of filter to 16 , number of
the filter layer to 1 , number of the hidden layer to 1 , epoch to 25 , batch size to 64, external filter i
have used is the over exposed, the optimizer is the nadam, padding would be the same as what we
used before, filter size I have pick the 5 for the kernel size, Activation function would relu, the pool
size would be 2 and the stride of each pooling would be 2 stride of filter 5, activation function
would be relu. the result we have is that latency with 1598 and the accuracy would be 93% which for
both latency improvement with 12.73 percent and the accuracy decreased would be 4.25%

weakness:

The weakness of this approach would be it took a lot of time to find the best
hyperparameter that could fit into your model. There are so many choices that you can pick from
and it could find so many hyperparameters that do not match. Therefore, I think in the future I will
find the best hyperparameter by using the auto tuning tool which is called SegaMaker.

5. FPGA

The FPGA in our project is using a DPU(Deep learning process unit) to accelerate
algorithms. DPU is a co-processor designed by Xillinx, and it can do complex matrix math for
CPU(arm cortex-a53 on ultra-96). To implement FPGA and DPU, we have to learn it step by step,
so we did a similar project in order to learn how those tools work and get familiar with FPGA. First
we have to build an environment and get two software tools ready. It requires at least 160 GB free
space and vitas + vivado. After that we would rebuild PYNQ. The rebuild resource could be found
on github which was published by Xillinx. Through this ‘study’ project, we have an idea about how
to modify or upload FPGA design on board. First we have to build or get a .bsp file, which is a FPAG
design, then we .xpr file of the FPGA design and load it into Vivado and export hardware, next we
open Vitas to create a application project in order to run hardware file which is exported from
Vivado, final step is connect Vitas to our ultra-96 board and run the project.

For the future work, we will use the same steps to implement a DPU on ultra-96 board and
see how fast will a DPU improve our ML algorithm.

6.Daughter card design

 We use PCB123 to build our own daughter card for our MIPI camera and the Ultra 96. The
adapter is important, because there is no port for MIPI camera directly on Ultra 96. We find a
similar module, AISTARVISION MIPI Adapter as our prototype to design the daughter card.

Weakness: Many parts and functions are not what we want on the prototype of the MIPI adapter.
We need to find our requirements, and think of the cost performance.

SDDEC20-01 13

7. prune

We use the TensorFlow prune tool and ANN visualization to reduce the size and increase
accuracy. In the end, we reduce 80% size and make the accuracy in an acceptable range. We can
obtain more efficient results for our programs through machine learning. I tried many different
prune methods, unit prune, weight prune, fisher prune, dropout technology. Some technologies do
not work or fit on our project. We make more tests by changing those main variables to make the
result better. That technology goal is to make the model less size but still have the highest
accuracy. The weakness is prune may cut some important connections and nodes. But we used
lucid and neteron to avoid part of the effect.

2.3 DEVELOPMENT PROCESS

Agile is the process we choose to follow, the rationale being agile lets us fast iterate and it is highly
adaptable to changes. We have a baseline to test efficiency and accuracy, and we experiment with
different techniques, if a technique seems promising, we integrate it.

our project process could divide into several parts:

 Camera:

At the beginning, we have to figure out which camera we are going to use, we consider cameras
with latency, accuracy, memory usage, cost impact,schedule impact, technical opportunity,
technical risk. We did a trade study and grid search on camera and decided to use two types of
camera which are raspberry PI(OV 5647) and Logitech(C920s). We have successfully used a
logitech camera, and for raspberry PI camera, we need a daughter card to connect the camera with
our board, however due to COVID-19 we are not able to get one from industry. So we decide to
design our own daughter card.

Hyper-parameter:

Before we change hyper-parameters, we have to learn how to use several tools in order to make the
right decisions. At the beginning, we learned how to use tensorflow and how to change
hyper-parameters. Then we started a grid search on different configurations for the ML algorithm.
For now we found the best hyper-parameter for our algorithm.

Pruning:

We found a pruning way that could reduce almost half the memory usage of our board. However,
after pruning the algorithm, we also lose some accuracy. For the pruning part, we made several
different programs to optimize our model. Optimize the model by trimming the overall model,
adjusting the sparsity, optimizing the model format and level, and reducing the input data size.
Our main goal is to do everything possible to improve the model's accuracy and speed while
reducing the size. We use several visualization models to increase the accuracy after pruning.
Neteron and Lucid can output the visualization picture for our model, which can help us to
improve accuracy. The ANN visualization can visualize the whole model layer to a pdf file. We use
the pdf to see which layer can be optimized to increase accuracy. Those several projects make the
prune part have a huge improvement about reducing size.

SDDEC20-01 14

FPGA:

We first learned how to train our data on a different algorithm(BNN). Then we learned how to use
Xilinx tools Vitas and Vivado by implementing a sample project. For the future works, we will work
on how to connect DPU(DPU is an existing design of FPGA project) to our board. There requires
lots of configurations and knowledge to implement this part. We will continuously work on it.

Data pre-manipulation

At the beginning we change our original data to 28x28 b&w and 36x36RGB, and do the test, we
found that compared with original data, the pre-manipulated data reduces latency. Then we start a
grid search on which types of images would be the best benefit for our algorithm. For now, we have
tested edge-detection images , over explored images, noise filtering images and sobel edge
detection images. For now the overexploited images work well, but we will keep looking for
manipulating ways to find the best result.

We have a group meeting with our client each week, and if we have some unsolved problem, we
will make a group meeting on the weekend, at the end of this semester we at least have 15 meetings
in total. And we want to make sure that everybody in our team is on the same stage, so we explain
our work, discovery, studies to our teammates every week.

Daughter Card Design:

It was a little difficult for us to start on the daughter card design because we did not have
experience on the PCB design. So all the things we need to learn by ourselves. We learned how to
use the tool PCB 123. Although we have the prototype of the MIPI adapter, we want to add a ToF
module (Time-of-Flight ranging sensor with multi target detection, on figure[2]U9) in order to
increase the accuracy of the detection. Also, some functions we did not want to use on the
prototype would change or delete during the design. We have 2 schematic reviews and 1 layout
review during the design process to make sure the daughter card was designed correctly. We have
several versions of the schematic and the layout, and here are the final versions of the design. We
send the final design to the industry and waitting for the board and testing.

figure[2],[3] and [4] are the schematic design by Xuewen Jiang.

SDDEC20-01 15

figure[2]

SDDEC20-01 16

figure[3]

figure[4]

SDDEC20-01 17

Layout designed by Jianhang Liu and Kazambe Isaac

figure[5]

BOM for the Daughter card design

Link:https://drive.google.com/open?id=1mXkfkNlMq9EA_Je-l3QsiqfseRGwOratzknDpmXhS5Y

SDDEC20-01 18

https://drive.google.com/open?id=1mXkfkNlMq9EA_Je-l3QsiqfseRGwOratzknDpmXhS5Y

Table[2]

SDDEC20-01 19

2.4 CONCEPTUAL SKETCH

figure[6]

This figure shows how our project works. First we get data from a camera interface, we would use
two cameras, one is a MIPI camera the other one is a USB camera. For the camera selection, one of
our teammates did a grid search and we did a group trade study for several selections of camera.
Then we would test which format of image is best for the ML algorithm. For example 28x28 black

SDDEC20-01 20

and white image, 36x36 RGB image, 28x28 overexposure image, edge detection image. for this step
we are still in a search stage, we are still looking for other image manipulation methods that could
work best for our ML algorithm, for know we got the data like memory usage latency and accuracy
for 28x28 black and white image, 36x36 RGB image, 28x28 overexposure image, edge detection
image. The FPGA part, we use DPU(deep learning process unit) to do complex matrix math for the
algorithm in order to improve the performance of the algorithm. For hyper-parameter, we did a lot
of tests via different parameters for the algorithm such as layers in neural network, epoch, batch
size, optimize algorithm. After finding the best parameters, we want a pruning for the algorithm.
then we will test if the algorithm meets our metrics based on accuracy, latency and memory usage.

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

(Include relevant background/literature review for the project

– If similar products exist in the market, describe what has already been done

– If you are following previous work, cite that and discuss the advantages/shortcomings

– Note that while you are not expected to “compete” with other existing products / research
groups, you should be able to differentiate your project from what is available

Detail any similar products or research done on this topic previously. Please cite your sources and
include them in your references. All figures must be captioned and referenced in your text.)

BackGround:

-- Although floating points are a good choice for handling the small updates that during
Convolutional Neural Network training, the resulting parameters can contain too much redundant
information.

-- BNN, in which some of the arithmetic involved in computing outputs are represented in only a
single bit. Kim and Smaragdis[1] has published their work on the full binarization with a preset
portion of the synapse having zero weight, and all other synapses with a weight of one. They report
98.7 % accuracy with a fully-connected network on MNIST dataset.

-- DoReFa-Net by Zhou et al. [2] explores reduced precision utilizing both the forward pass and the
backward pass, he observes that this opens opportunities for training the neural networks on
FPGAS. Their results include the best-case ImageNet Top-1 accuracies of 43% for full and 53% for
partial binarization.

SDDEC20-01 21

-- Major advantages of using BNN is the drastic improvement in efficiency. However, we can also
expect a large amount of drop in accuracy. For our project, we can utilize the inference on the
FPGA with either full or partial binarization.

3.2 TECHNOLOGY CONSIDERATIONS

--- Major strengths using quantization, pruning and hyper-parameter tuning is the ability to
inference at a faster speed, also taking less memories at the same time.

--- However, this could somehow affect our inferencing accuracies with unseen data. We are also
facing the classic accuracy-computation tradeoffs.

--- One alternative is using k-fold validation to validate with our pruning, quantization, image-pre
manipulation and hyper-parameter tuning. So the test set can give unbiased feedback.

--FPGA acceleration. For our inference step, it will require a lot of CPU resources to do the complex
math for inference. We will use FPGA to do the math and send the result back to the CPU in order
to accelerate the algorithm.

3.3 TASK DECOMPOSITION

-- Image pre manipulation

apply different filters on input images and adjust its format (e.g. grayscale, color, resolution) to find
the method that can benefit the system most.

-- Hyper-parameter tuning

using different parameters for the algorithm such as filter number filter layer hidden layer , we
want to find the best number for those configurations.

-- pruning

understand each layers in NN and remove some of them in order to accelerate the algorithm

-- Quantization of weights

a way to manipulate data string in algorithm in order to reduce workloads of the algorithm

SDDEC20-01 22

-- FPGA design for acceleration

FPGA can do parallel computation, which will be much faster than a CPU

The tasks are taking different angles in effort to reduce the operations needed for the inference. On
the training side we pre manipulate images, fine tune the layers, pruning the unnecessary
connections; On the infereing side, we quantize the neural network and map onto the FPGA.

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

1.Coronavirus：

Coronavirus happens in January and widespread in the United States in March. We cannot predict
the virus widespread in such a bad situation, but we should think of such risk earlier and get the
solution for that.

 1)Risks: Delaying our camera daughter card. We cannot get the camera adapter card
because all factories are closing during the coronavirus.

 Risk solution: Design our own daughter card by ourselves for the Ultra 96.

 2)Risks: Group working. It is hard to meet each other in the lab because the school is
closing.

Risk Solution: We have group meetings online and get video chatting every week to discuss
our process.

2. Reducing computation may influence our inference accuracies

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

-- Key milestones: Delopying algorithm on FPGA;

 Obtain baseline algorithm metrics(memory,speed,accuracy)

 Improve algorithm to surpass baseline metrics

 Discover some better image filters for processing

SDDEC20-01 23

-- Tests: Run the modified algorithm on ULTRA96-v2(FPGA) with the same measurement of time,
memory, accuracy. Comparing the newly obtained results with baseline metrics.

3.6 PROJECT TRACKING PROCEDURES

-- GANTT chart. We use the Gantt chart to manage our project timeline and working status.

-- Google Doc. We use Google Doc to share our work and files.

--Weekly meeting. We have group face-to-face meetings every week (when the school is still open).

--Telegram Chatroom. We use Telegram to have a weekly meeting to share our working process
with group members and clients.

3.7 EXPECTED RESULTS AND VALIDATION

Our desired outcome:

-- Improve speed by 50 %

-- Keep the accuracy above 97 % on unseen data

--Less size

--For Hardware, finish Daughter card design on PCB123, then order the meterials.

We will confirm that our solutions work at a High level with:

-- Comparing the newly obtained metrics with baseline metrics; on the same dataset

-- Contact clients or advisers often to get suggestions on the work process

SDDEC20-01 24

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

Project timeline for 491

figure[7]

-- paragraphs: The timeline is being proposed to be agile and adaptable to changes as we get
familiar with the technology and may want to experiment/follow different methods to achieve our
goal and capture results based on a well-defined guideline, and obtain our result(metrics) in a
reliable manner.

Project timeline for 491 and 492

SDDEC20-01 25

figure[8]

We continued our project process on 491 and tried to finish it.

4.2 FEASIBILITY ASSESSMENT

Realistic projection of what the project will be. State foreseen challenges of the project.

-- We will make some significant improvement on latency, memory usage while keeping a pretty
good accuracy.

4.3 PERSONNEL EFFORT REQUIREMENTS

table [2]

SDDEC20-01 26

Task Explanation Requirements

Pruning Prune the network 143 hrs

Hyperparameter Tuning Fine tune the network 144 hrs

Sparse Filters Using sparse filters 147 hrs

FPGA design FPGA hardware design 143 hrs

Camera interface Trade Study Study trade off on camera
options

30 hrs

PCB Design for the camera
interface daughter card

Design a adapter between
Ultra 96 and camera interface

100 hrs

BNN implementation of
algorithm

Binarize the weights for
algorithm

143 hrs

Camera FPGA integration Integrate Camera with FPGA 144

Pruning requires a lot of tests, for pruning our goal is delete those layers in an algorithm which may
have no impact or little impact for the result, unfortunately we don’t know which layer satisfied, so
we have to test and compare the results which would cost a lot of time.

Hyperparameter is like how we configure the algorithm, same as pruning we have to find best
numbers for each parameter, it’s another grid search.

FPGA design, for our team, we are all new to FPGA. So our client would lead us to do this part. To
start FPGA design, we studied several tools like Vitas, Vivado. The final goal for FPGA is to use a
DPU do complex math calculation for the CPU on ultra-96

PCB daughter card design, because it is our first time to do the PCB design so we need more time to
learn and use the PCB123, choosing the parts we need for the design.

4.4 OTHER RESOURCE REQUIREMENTS

-- Camera Daughter card. We are planning to use the MIPI camera interface for the Ultra 96, so we
need to have a camera interface adapter card to connect those two boards.

-- Ultra96-v2

-- Xilinx License

4.5 FINANCIAL REQUIREMENTS

-- Financial support for hardware purchase. All the purchase will be agreed by the client and get it
from him.

 Ultra 96-v2

 USB camera: Logitech C920s.

 MIPI cameras: Two Raspberry PI cameras OV5647 for catching images.

 Camera daughter card: 96Boards DUAL MIPI Adapter Mezzanine - AiStarVision

 Since we cannot get the daughter card so we will need the parts and PCB when we finish the
daughter card design.

SDDEC20-01 27

5. Testing and Implementation

Needed test for our project includes:

Unit testing for modules, integrity testing for interfaces, user-study for functional and
non-functional requirements

1. Individual items to be tested for our project includes:
a. Ultra96-v2 functionality test
b. Software-hardware integration test
c. Hardware test include daughter card and camera interface
d. unit testing for pruning, quantization

Some actual test cases include unit testing for each of our software components, for instance we
have thoroughly tested each of our components, ie the part for metrics measurements,
quantization such before we merge everything together for integrity testing.

Challenges:

Unstable environment.

Cannot get the hardware such as the daughter card because of the coronavirus.

Cannot get the order from industry for our daughter card design. The Time is longer than expected.

5.1 INTERFACE SPECIFICATIONS

Hardware interfacing testing: ultra96-v2 board, MIPI Camera, camera daughter card

Software interfacing testing:

a. IP network protocols, software drivers for the peripheral devices
b. Compatibility test with different software modules kears, tensorflow, tensorflow-lite on

Coretext-arm53 system etc
c. Software hardware compatibility test with our modified bitstream on the existing FPGA

overlay provided by Xilinx

SDDEC20-01 28

5.2 HARDWARE AND SOFTWARE

-- software drivers for ultra96-v2, this is useful because we want to make sure drivers is not causing
us connections issues

-- IP network protocols for communication between host and embedded development board, this is
useful because we want to eliminate possibility of bugs that may introduced by protocols
communication issue

-- MIPI camera is useful because we can drive the MIPI camera to do the data pre-manipulation
prior to the algorithm.

-- Camera daughter card is an adapter to connect Ultra96 and the MIPI camera interface.

5.3 FUNCTIONAL TESTING

--- Unit test for software that measures metrics
--- Integration test for running the metrics on ultra96 ARM processor
--- Acceptance testing for running new algorithm and make sure the metrics is better than the
baseline

--- Cross-validation test with k-fold on all datasets and calculate average loss for each fold
--- Split datasets into train, validation and test; conceal test dataset to prevent human bias added
into the algorithm from hyper-parameter tuning etc

5.4 NON-FUNCTIONAL TESTING

Testing for performance, security, usability, compatibility

--- Performance testing for keep the memory usage low

--- Compatibility test for running frameworks that support ARM53 processor architecture

----Scalability test: Classify images on eyes with different shapes/colors

---- Usability test: Mock the mounted camera on helmet environment and test usability of the
system

SDDEC20-01 29

5.5 PROCESS

-- We tested the software drivers by connected the ultra96 to different host computer and make
sure the opperatate driver was supported in different operating system

-- we tested different connectivity protocols utilizing different connection protocols like uart, usb
etc.

-- Camera setting: We first use the camera on the laptop for testing the code is working. We can
catch our eye in the camera and run the algorithm in the jupyter notebook to analyse if the eye is
open or closed. Then we run it on the Ultra 96 and connect with the USB camera and it works.

-- Daughter card: Because we did not get the daughter card from the industry, so we did not have a
chance to test it. We use knowledge and a calculator to do the self-testing during the PCB design.
Make sure all the capacitor, resistor and parts will work when we test on the Ultra 96.

5.6 RESULTS

--- All connect and drivers test indicates successes

--- What I learned is that we should stuck with the official supported operating system and
software so the likelihood of running to unknown bugs are low

--- One implementation issues is that some of the existing frameworks supports older version of
Xilinx tools that has been archived

---During training, The image input to the model is as important as the model base. In the testing,
we input different size images to training and got various data. The test result shows we need to
focus on input image size and dimension.

---We need to focus on which tool is best for the specific task, the most popular tool may not be
useful, but the unknown skill makes enormous improvements.

figure[9] and [10]

[result for pruned model, we can observe significant reduction in latency]

SDDEC20-01 30

SDDEC20-01 31

accuracy for Learning rate current model is : 95.3125 %
mean latency per image = 0.03 seconds = 26513.91 microseconds

SDDEC20-01 32

6. Closing Material

6.1 CONCLUSION

--- We have set up the metrics, improved the algorithm by more than 80% in terms of latency,
some more improvement can be done in terms of accuracy.

--- Explore hardware acceleration and utilizing the FPGA advantage to harvest more computation
power and improve our algorithm further

--- For the goal about smaller model size, we already finished part of the goal and made the size
model much less than before. After that, we think we need to mix the pruning model with others'
work and try to increase the accuracy in the next step. Since we not only need to decrease one
model size, we will also improve other models in the future step.

--We finish the daughter card PCB design, and start on order the materials and boards. We did nott
get the daughter card in the end so we did not have a chance to test it. The work will be continued
to the next team.

6.2 REFERENCES

[1] M. Kim and P. Smaragdis. Bitwise neural networks. [26] CoRR, abs/1601.06071, 2016.

[2] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. DoReFa-Net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. CoRR, abs/1606.06160, 2016.

[3]Design by GanttProject 2.8.11.

[4]Gskielian. “Gskielian/JPG-PNG-to-MNIST-NN-Format.” GitHub,
github.com/gskielian/JPG-PNG-to-MNIST-NN-Format/blob/master/convert-images-to-mnist-form
at.py.

SDDEC20-01 33

6.3 APPENDICES

Design document:

https://sddec20-01.sd.ece.iastate.edu/docs.html

Current situation for the PCB daughter card design:

Bill of materials and requirements:
https://drive.google.com/open?id=1mXkfkNlMq9EA_Je-l3QsiqfseRGwOratzknDpmXhS5Y

Camera interface trade study:

https://drive.google.com/open?id=1i7nz3Z4Ww1dShxYpAawH-zAwqsWl7XHK

SDDEC20-01 34

https://sddec20-01.sd.ece.iastate.edu/docs.html
https://drive.google.com/open?id=1mXkfkNlMq9EA_Je-l3QsiqfseRGwOratzknDpmXhS5Y
https://drive.google.com/open?id=1i7nz3Z4Ww1dShxYpAawH-zAwqsWl7XHK

